

Pixel window functions
A pixelised signal f(p) is the average within each pixel p (with surface
area
) of the underlying signal
where w_{p} is equal to within the pixel, and equal to 0 outside, so that . Eq. (1) then becomes
where is the Spherical Harmonic Transform of the pixel p.
However, complete analysis of a pixelised map with the exact w_{lm}(p)
defined above would be computationally intractable (because of azimutal
variation of pixel shape over the polar caps of the HEALPix grid),
and some simplifying asumptions have to be
made. If the pixel is small compared to the signal correlation length
(determined by the beam size), the exact structure of the pixel can be ignored
in the subsequent analysis and we can assume
where we introduced the maveraged window function which is independent of the pixel location on the sky.
If we assume all the pixels to be identical, the power spectrum of the
pixelized map,
, is related to the hypothetical unpixelized
one,
, by
where the effective pixel window function w_{l} is defined as This function is provided with the HEALPix package for for each resolution parameter . The pixel window functions are now available for both temperature and polarization. For , those window functions are computed exactly using Eqs. (30) and (32). For the calculations are too costly to be done exactly at all l. The temperature windows are extrapolated from the case assuming a scaling in l similar to the one exhibited by the window of a tophat pixel. The polarization windows are assumed to be proportional to those for temperature, with a proportionality factor given by the exact calculation of w_{l} at low l. Because of a change of the extrapolation scheme used, the temperature window functions provided with HEALPix 1.2 and higher for are slighty different from those provided with HEALPix 1.1. For a given , the relative difference increases almost linearly with l, and is of the order of at and at . Eric Hivon 20100618 



