![]() |
![]() |
![]() |
|||||||||||||||||
![]() |
![]() |
![]() |
|||||||||||||||||
![]() |
|
![]() |
|||||||||||||||||
![]() |
![]() |
![]() |
![]() |
alm_powspec_tools.hGo to the documentation of this file.00001 /* 00002 * This file is part of Healpix_cxx. 00003 * 00004 * Healpix_cxx is free software; you can redistribute it and/or modify 00005 * it under the terms of the GNU General Public License as published by 00006 * the Free Software Foundation; either version 2 of the License, or 00007 * (at your option) any later version. 00008 * 00009 * Healpix_cxx is distributed in the hope that it will be useful, 00010 * but WITHOUT ANY WARRANTY; without even the implied warranty of 00011 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 00012 * GNU General Public License for more details. 00013 * 00014 * You should have received a copy of the GNU General Public License 00015 * along with Healpix_cxx; if not, write to the Free Software 00016 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 00017 * 00018 * For more information about HEALPix, see http://healpix.jpl.nasa.gov 00019 */ 00020 00021 /* 00022 * Healpix_cxx is being developed at the Max-Planck-Institut fuer Astrophysik 00023 * and financially supported by the Deutsches Zentrum fuer Luft- und Raumfahrt 00024 * (DLR). 00025 */ 00026 00027 /*! \file alm_powspec_tools.h 00028 * Copyright (C) 2003, 2004, 2005 Max-Planck-Society 00029 * \author Martin Reinecke 00030 */ 00031 00032 #ifndef PLANCK_ALM_POWSPEC_TOOLS_H 00033 #define PLANCK_ALM_POWSPEC_TOOLS_H 00034 00035 #include "xcomplex.h" 00036 00037 template<typename T> class Alm; 00038 class PowSpec; 00039 class planck_rng; 00040 class rotmatrix; 00041 00042 /*! \defgroup alm_ps_group Conversions between a_lm and power spectra */ 00043 /*! \{ */ 00044 00045 /*! Creates a Gaussian realisation of the input power spectrum \a powspec, 00046 using the random number generator \a rng, and returns the result 00047 in \a alm. */ 00048 template<typename T> void create_alm (const PowSpec &powspec, 00049 Alm<xcomplex<T> > &alm, planck_rng &rng); 00050 00051 /*! Creates a Gaussian realisation of the polarised input power spectrum 00052 \a powspec, using the random number generator \a rng, and returns the 00053 result in \a almT, \a almG and \a almC. */ 00054 template<typename T> void create_alm_pol 00055 (const PowSpec &powspec, 00056 Alm<xcomplex<T> > &almT, 00057 Alm<xcomplex<T> > &almG, 00058 Alm<xcomplex<T> > &almC, 00059 planck_rng &rng); 00060 00061 /*! Returns the unpolarised power spectrum of \a alm in \a powspec. */ 00062 template<typename T> void extract_powspec 00063 (const Alm<xcomplex<T> > &alm, PowSpec &powspec); 00064 /*! Returns the cross power spectrum of \a alm1 and \a alm2 in \a powspec. */ 00065 template<typename T> void extract_crosspowspec 00066 (const Alm<xcomplex<T> > &alm1, 00067 const Alm<xcomplex<T> > &alm2, PowSpec &powspec); 00068 /*! Returns the polarised power spectrum of \a almT, \a almG and \a almC 00069 in \a powspec. */ 00070 template<typename T> void extract_powspec 00071 (const Alm<xcomplex<T> > &almT, 00072 const Alm<xcomplex<T> > &almG, 00073 const Alm<xcomplex<T> > &almC, 00074 PowSpec &powspec); 00075 00076 /*! \} */ 00077 00078 /*! Applies a convolution with a Gaussian beam with an FWHM of 00079 \a fwhm_arcmin arcmin to \a alm. 00080 \note If \a fwhm_arcmin<0, a deconvolution with \a -fwhm_arcmin 00081 is performed. 00082 \relates Alm */ 00083 template<typename T> void smooth_with_Gauss 00084 (Alm<xcomplex<T> > &alm, double fwhm_arcmin); 00085 /*! Applies a convolution with a Gaussian beam with an FWHM of 00086 \a fwhm_arcmin arcmin to \a almT, \a almG and \a almC. 00087 \note If \a fwhm_arcmin<0, a deconvolution with \a -fwhm_arcmin 00088 is performed. 00089 \relates Alm */ 00090 template<typename T> void smooth_with_Gauss 00091 (Alm<xcomplex<T> > &almT, 00092 Alm<xcomplex<T> > &almG, 00093 Alm<xcomplex<T> > &almC, 00094 double fwhm_arcmin); 00095 00096 /*! Rotates \a alm through the Euler angles \a psi, \a theta and \a phi. 00097 The Euler angle convention is right handed, rotations are active. 00098 - \a psi is the first rotation about the z-axis (vertical) 00099 - then \a theta about the ORIGINAL (unrotated) y-axis 00100 - then \a phi about the ORIGINAL (unrotated) z-axis (vertical) 00101 \relates Alm */ 00102 template<typename T> void rotate_alm (Alm<xcomplex<T> > &alm, 00103 double psi, double theta, double phi); 00104 00105 /*! Rotates \a almT, \a almG and \a almC through the Euler angles 00106 \a psi, \a theta and \a phi. 00107 The Euler angle convention is right handed, rotations are active. 00108 - \a psi is the first rotation about the z-axis (vertical) 00109 - then \a theta about the ORIGINAL (unrotated) y-axis 00110 - then \a phi about the ORIGINAL (unrotated) z-axis (vertical) 00111 \relates Alm */ 00112 template<typename T> void rotate_alm (Alm<xcomplex<T> > &almT, 00113 Alm<xcomplex<T> > &almG, Alm<xcomplex<T> > &almC, 00114 double psi, double theta, double phi); 00115 00116 /*! Rotates \a alm through the rotation matrix \a mat. 00117 \relates Alm */ 00118 template<typename T> void rotate_alm (Alm<xcomplex<T> > &alm, 00119 const rotmatrix &mat); 00120 00121 /*! Rotates \a almT, \a almG and \a almC through the rotation matrix \a mat. 00122 \relates Alm */ 00123 template<typename T> void rotate_alm (Alm<xcomplex<T> > &almT, 00124 Alm<xcomplex<T> > &almG, Alm<xcomplex<T> > &almC, 00125 const rotmatrix &mat); 00126 00127 #endif Generated on Fri Jun 18 16:12:30 2010 for Healpix C++ |
![]() |
![]() |
![]() |
![]() |
||||
![]() |
|
![]() |
||||
![]() |
![]() |
![]() |
||||
![]() |
|
![]() |
||||
![]() |
![]() |
![]() |
||||
![]() |
![]() |
![]() |